If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2=50x
We move all terms to the left:
18x^2-(50x)=0
a = 18; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·18·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*18}=\frac{100}{36} =2+7/9 $
| x+(x*18/100)=10000 | | -7r+11=74 | | 2(x+11)1/2=x+32(x+11)1/2=x+3. | | -x=188=265 | | 2x-(3+x)=(1-x) | | 9b+6=5b+30 | | -72=-8(10+w) | | 5x-5+2x+10=180 | | x=3(3)-11 | | 40=-5(b–12)–5 | | 157-y=277 | | 15x=14x-6 | | 63=7(z+2) | | -10(y+7)=40 | | 45a+42=37a+74 | | 6(11+r)=54 | | 3^x+10=3^3x | | 4/5x+1=-4 | | 3=11+d/2 | | 30x+28=19x+116 | | 40=4y-8 | | 4x-32=-8x+16 | | 5z+9-15=0 | | 128=-w+188 | | 2^x=4^x+3 | | 25^x=125^x-5 | | 8-(2x-1)=8 | | -2(3x+1)=-6x+7 | | 2x^2+4=5x-7 | | y+2=-4y-8 | | -11=s/2 | | 7u+2u=81 |